allow one to noninvasively determine who would be at risk for epilepsy after a seizure. MRI/MRS along with the unique neural stem cell metabolic profile to quantify neurogenesis may ultimately increases. One theory of epileptogenesis proposes aberrant connections among these newborn neurons in vivo. After a seizure has occurred, neural stem cell proliferation from a mouse brain had a unique metabolic profile using NMR when compared to other brain cells, on onset seizure. As a postdoctoral fellow, Dr. Manganas was able to show that neural stem cells cultured on a mouse brain had a unique metabolic profile using NMR when compared to other brain cells, on onset seizure. As a postdoctoral fellow, Dr. Manganas was able to show that neural stem cells cultured on a mouse brain had a unique metabolic profile using NMR when compared to other brain cells, on onset seizure. As a postdoctoral fellow, Dr. Manganas was able to show that neural stem cells cultured on a mouse brain had a unique metabolic profile using NMR when compared to other brain cells, on onset seizure. As a postdoctoral fellow, Dr. Manganas was able to show that neural stem cells cultured on a mouse brain had a unique metabolic profile using NMR when compared to other brain cells, on onset seizure. As a postdoctoral fellow, Dr. Manganas was able to show that neural stem cells cultured on a mouse brain had a unique metabolic profile using NMR when compared to other brain cells, on onset seizure. As a postdoctoral fellow, Dr. Manganas was able to show that neural stem cells cultured on a mouse brain had a unique metabolic profile using NMR when compared to other brain cells, on onset seizure. As a postdoctoral fellow, Dr. Manganas was able to show that neural stem cells cultured on a mouse brain had a unique metabolic profile using NMR when compared to other brain cells, on onset seizure. As a postdoctoral fellow, Dr. Manganas was able to show that neural stem cells cultured on a mouse brain had a unique metabolic profile using NMR when compared to other brain cells, on onset seizure. As a postdoctoral fellow, Dr. Manganas was able to show that neural stem cells cultured on a mouse brain had a unique metabolic profile using NMR when compared to other brain cells, on onset seizure. As a postdoctoral fellow, Dr. Manganas was able to show that neural stem cells cultured on a mouse brain had a unique metabolic profile using NMR when compared to other brain cells, on onset seizure. As a postdoctoral fellow, Dr. Manganas was able to show that neural stem cells cultured on a mouse brain had a unique metabolic profile using NMR when compared to other brain cells, on onset seizure. As a postdoctoral fellow, Dr. Manganas was able to show that neural stem cells cultured on a mouse brain had a unique metabolic profile using NMR when compared to other brain cells, on onset seizure. As a postdoctoral fellow, Dr. Manganas was able to show that neural stem cells cultured on a mouse brain had a unique metabolic profile using NMR when compared to other brain cells, on onset seizure. As a postdoctoral fellow, Dr. Manganas was able to show that neural stem cells cultured on a mouse brain had a unique metabolic profile using NMR when compared to other brain cells, on onset seizure. As a postdoctoral fellow, Dr. Manganas was able to show that neural stem cells cultured on a mouse brain had a unique metabolic profile using NMR when compared to other brain cells, on onset seizure. As a postdoctoral fellow, Dr. Manganas was able to show that neural stem cells cultured on a mouse brain had a unique metabolic profile using NMR when compared to other brain cells, on onset seizure. As a postdoctoral fellow, Dr. Manganas was able to show that neural stem cells cultured on a mouse brain had a unique metabolic profile using NMR when compared to other brain cells, on onset seizure. As a postdoctoral fellow, Dr. Manganas was able to show that neural stem cells cultured on a mouse brain had a unique metabolic profile using NMR when compared to other brain cells, on onset seizure. As a postdoctoral fellow, Dr. Manganas was able to show that neural stem cells cultured on a mouse brain had a unique metabolic profile using NMR when compared to other brain cells, on onset seizure. As a postdoctoral fellow, Dr. Manganas was able to show that neural stem cells cultured on a mouse brain had a unique metabolic profile using NMR when compared to other brain cells, on onset seizure. As a postdoctoral fellow, Dr. Manganas was able to show that neural stem cells cultured on a mouse brain had a unique metabolic profile using NMR when compared to other brain cells, on onset seizure. As a postdoctoral fellow, Dr. Manganas was able to show that neural stem cells cultured on a mouse brain had a unique metabolic profile using NMR when compared to other brain cells, on onset seizure. As a postdoctoral fellow, Dr. Manganas was able to show that neural stem cells cultured on a mouse brain had a unique metabolic profile using NMR when compared to other brain cells, on onset seizure. As a postdoctoral fellow, Dr. Manganas was able to show that neural stem cells cultured on a mouse brain had a unique metabolic profile using NMR when compared to other brain cells, on onset seizure. As a postdoctoral fellow, Dr. Manganas was able to show that neural stem cells cultured on a mouse brain had a unique metabolic profile using NMR when compared to other brain cells, on onset seizure. As a postdoctoral fellow, Dr. Manganas was able to show that neural stem cells cultured on a mouse brain had a unique metabolic profile using NMR when compared to other brain cells, on onset seizure. As a postdoctoral fellow, Dr. Manganas was able to show that neural stem cells cultured on a mouse brain had a unique metabolic profile using NMR when compared to other brain cells, on onset seizure. As a postdoctoral fellow, Dr. Manganas was able to show that neural stem cells cultured on a mouse brain had a unique metabolic profile using NMR when compared to other brain cells, on onset seizure. As a postdoctoral fellow, Dr. Manganas was able to show that neural stem cells cultured on a mouse brain had a unique metabolic profile using NMR when compared to other brain cells, on onset seizure. As a postdoctoral fellow, Dr. Manganas was able to show that neural stem cells cultured on a mouse brain had a unique metabolic profile using NMR when compared to other brain cells, on onset seizure. As a postdoctoral fellow, Dr. Manganas was able to show that neural stem cells cultured on a mouse brain had a unique metabolic profile using NMR when compared to other brain cells, on onset seizure. As a postdoctoral fellow, Dr. Manganas was able to show that neural stem cells cultured on a mouse brain had a unique metabolic profile using NMR when compared to other brain cells, on onset seizure. As a postdoctoral fellow, Dr. Manganas was able to show that neural stem cells cultured on a mouse brain had a unique metabolic profile using NMR when compared to other brain cells, on onset seizure. As a postdoctoral fellow, Dr. Manganas was able to show that neural stem cells cultured on a mouse brain had a unique metabolic profile using NMR when compared to other brain cells, on onset seizure. As a postdoctoral fellow, Dr. Manganas was able to show that neural stem cells cultured on a mouse brain had a unique metabolic profile using NMR when compared to other brain cells, on onset seizure. As a postdoctoral fellow, Dr. Manganas was able to show that neural stem cells cultured on a mouse brain had a unique metabolic profile using NMR when compared to other brain cells, on onset seizure. As a postdoctoral fellow, Dr. Manganas was able to show that neural stem cells cultured on a mouse brain had a unique metabolic profile using NMR when compared to other brain cells, on onset seizure. As a postdoctoral fellow, Dr. Manganas was able to show that neural stem cells cultured on a mouse brain had a unique metabolic profile using NMR when compared to other brain cells, on onset seizure. As a postdoctoral fellow, Dr. Manganas was able to show that neural stem cells cultured on a mouse brain had a unique metabolic profile using NMR when compared to other brain cells, on onset seizure. As a postdoctoral fellow, Dr. Manganas was able to show that neural stem cells cultured on a mouse brain had a unique metabolic profile using NMR when compared to other brain cells, on onset seizure. As a postdoctoral fellow, Dr. Manganas was able to show that neural stem cells cultured on a mouse brain had a unique metabolic profile using NMR when compared to other brain cells, on onset seizure. As a postdoctoral fellow, Dr. Manganas was able to show that neural stem cells cultured on a mouse brain had a unique metabolic profile using NMR when compared to other brain cells, on onset seizure. As a postdoctoral fellow, Dr. Manganas was able to show that neural stem cells cultured on a mouse brain had a unique metabolic profile using NMR when compared to other brain cells, on onset seizure. As a postdoctoral fellow, Dr. Manganas was able to show that neural stem cells cultured on a mouse brain had a unique metabolic profile using NMR when compared to other brain cells, on onset seizure. As a postdoctoral fellow, Dr. Manganas was able to show that neural stem cells cultured on a mouse brain had a unique metabolic profile using NMR when compared to other brain cells, on onset seizure. As a postdoctoral fellow, Dr. Manganas was able to show that neural stem cells cultured on a mouse brain had a unique metabolic profile using NMR when compared to other brain cells, on onset seizure. As a postdoctoral fellow, Dr. Manganas was able to show that neural stem cells cultured on a mouse brain had a unique metabolic profile using NMR when compared to other brain cells, on onset seizure. As a postdoctoral fellow, Dr. Manganas was able to show that neural stem cells cultured on a mouse brain had a unique metabolic profile using NMR when compared to other brain cells, on onset seizure. As a postdoctoral fellow, Dr. Manganas was able to show that neural stem cells cultured on a mouse brain had a unique metabolic profile using NMR when compared to other brain cells, on onset seizure. As a postdoctoral fellow, Dr. Manganas was able to show that neural stem cells cultured on a mouse brain had a unique metabolic profile using NMR when compared to other brain cells, on onset seizure. As a postdoctoral fellow, Dr. Manganas was able to show that neural stem cells cultured on a mouse brain had a unique metabolic profile using NMR when compared to other brain cells, on onset seizure. As a postdoctoral fellow, Dr. Manganas was able to show that neural stem cells cultured on a mouse brain had a unique metabolic profile using NMR when compared to other brain cells, on onset seizure. As a postdoctoral fellow, Dr. Manganas was able to show that neural stem cells cultured on a mouse brain had a unique metabolic profile using NMR when compared to other brain cells, on onset seizure. As a postdoctoral fellow, Dr. Manganas was able to show that neural stem cells cultured on a mouse brain had a unique metabolic profile using NMR when compared to other brain cells, on onset seizure. As a postdoctoral fellow, Dr. Manganas was able to show that neural stem cells cultured on a mouse brain had a unique metabolic profile using NMR when compared to other brain cells, on onset seizure. As a postdoctoral fellow, Dr. Manganas was able to show that neural stem cells cultured on a mouse brain had a unique metabolic profile using NMR when compared to other brain cells, on onset seizure. As a postdoctoral fellow, Dr. Manganas was able to show that neural stem cells cultured on a mouse brain had a unique metabolic profile using NMR when compared to other brain cells, on onset seizure. As a postdoctoral fellow, Dr. Manganas was able to show that neural stem cells cultured on a mouse brain had a unique metabolic profile using NMR when compared to other brain cells, on onset seizure. As a postdoctoral fellow, Dr. Manganas was able to show that neural stem cells cultured on a mouse brain had a unique metabolic profile using NMR when compared to other brain cells, on onset seizure. As a postdoc...